Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier.

نویسندگان

  • Jurgen Karczewski
  • Freddy J Troost
  • Irene Konings
  • Jan Dekker
  • Michiel Kleerebezem
  • Robert-Jan M Brummer
  • Jerry M Wells
چکیده

Lactobacillus plantarum, a commensal bacterium of humans, has been proposed to enhance the intestinal barrier, which is compromised in a number of intestinal disorders. To study the effect of L. plantarum strain WCFS1 on human barrier function, healthy subjects were administered L. plantarum or placebo in the duodenum for 6 h by means of a feeding catheter. The scaffold protein zonula occludens (ZO)-1 and transmembrane protein occludin were found to be significantly increased in the vicinity of the tight-junction (TJ) structures, which form the paracellular seal between cells of the epithelium. In an in vitro model of the human epithelium, L. plantarum induced translocation of ZO-1 to the TJ region; however, the effects on occludin were minor compared with those seen in vivo. L. plantarum was shown to activate Toll-like receptor 2 (TLR2) signaling, and treatment of Caco-2 monolayers with the TLR2 agonist Pam(3)-Cys-SK4(PCSK) significantly increased fluorescent staining of occludin in the TJ. Pretreatment of Caco-2 monolayers with L. plantarum or PCSK significantly attenuated the effects of phorbol ester-induced dislocation of ZO-1 and occludin and the associated increase in epithelial permeability. Our results identifying commensal bacterial stimulation of TLR2 in the gut epithelium as a regulator of epithelial integrity have important implications for understanding probiotic mechanisms and the control of intestinal homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSLATIONAL PHYSIOLOGY Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier

Jurgen Karczewski,* Freddy J. Troost,* Irene Konings, Jan Dekker, Michiel Kleerebezem, Robert-Jan M. Brummer, and Jerry M. Wells TI Food & Nutrition, Nieuwe Kanaal, Wageningen; Host-Microbe Interactomics Group, Animal Sciences, University of Wageningen; Department of Internal Medicine, Division of Gastroenterology & Hepatology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Ma...

متن کامل

Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway

BACKGROUND Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective...

متن کامل

Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is a serious intestinal disease that occurs in newborn infants. It is associated with major morbidity and affects 5% of all infants admitted to neonatal intensive care units. Probiotics have variable efficacy in preventing necrotizing enterocolitis. Tight junctions (TJ) are protein complexes that maintain epithelial barrier integrity. We hypothesized that the pro...

متن کامل

Polarized and Non-Poarized Human Oviduct Epithelial Cell Ultrastructure in Vitro

Purpose: This study designed to examine polarized culture of epithelial cells from human ovidutc and their ultrastracture under polarizing condition. Materials and Methods: The human oviduct was obtained from patients having undergone total hysterectomy and epithelial cells were isolated using collagenase type I. The epithelial cells were either cultured on ECM (Extracellular matrix) Gel coate...

متن کامل

Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-alpha.

AIM To determine whether Lactobacillus plantarum can modify the deleterious effects of tumor necrosis factor-alpha (TNF-alpha) on intestinal epithelial cells. METHODS Caco-2 cells were incubated with TNF-alpha alone or in the presence of L. plantarum. Transepithelial electrical resistance was used to measure epithelial barrier function. Interleukin 8 (IL-8) secretion by intestinal epithelial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010